

TS 2004 Workshop

Airfield Design Solutions

2 April 2004

USACE Transportation Systems Center

B. J. Skar

Gainard Mattke

Kordon Kiel

Introduction

- Airfield Criteria Review
- PCC Jointing
- Joint Sealing
- Design Essentials

DOD Airfield Criteria Review

Gainard Mattke

gainard.l.mattke@usace.army.mil 402-221-7263 Latest Criteria Outline.doc

PCC Jointing Discussion

B.J. Skar

bernard.j.skar@usace.army.mil 402-221-7262

PCC JOINTING

- Why Plain Jointed PCC
- Why Joint PCC
- Joint Spacing
- Load Transfer
- Joint Types

Why Plain Jointed PCC

(PCC JOIINTING)

- Experience/Repairs
- Least Cost Life Cycle
- UFC 3-260-02 requires it

Why Joint PCC

(PCC JOHNTING)

- Heat of Hydration (shrinkage)
- Water loss (shrinkage)
- Curling (temp differential)

Joint Spacing

(PCC JOHNTING)

- Volumetric shrinkage uniform
- Cracks form in square pattern
- •Experience shows related to thickness
- •Table 7, UFC 3-260-02 (page 12-21)
- Old criteria and 25 foot slabs

Load Transfer

(PCC JOHNTING)

- What is load transfer?
- Why require load transfer?
- How is it provided?
- •When is ok to not provide it?

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(PCC JOIINTING)

- Contraction
- Construction

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Contraction)

- Sawn
- Inserts (not used on airfields)
- Tied (not used on airfields)
- Doweled

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

Sawn Contraction

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

Tied Contraction

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

Doweled Contraction

Welcome to the US Army
Corps of Engineers
TRANSPORTATION SYSTEMS CENTER

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction)

- Butt Joint
- Doweled Joint
- Thickened Edge Joint
- Tied

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction Butt)

- Plain
- Expansion
- Slip?

Joint Types

(Construction Plain Butt)

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction Butt Expansion)

3/4 inch expansion joint material

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction Butt Slip?)

1//16 inch if joints line up, 1/4 inch if joints don't line up.

Joint Types

(Construction Doweled)

- Doweled Plain
- Doweled Expansion
- Doweled Different Thickness

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction Doweled Plain)

Doweled Construction

- Dowel Size
- Table 12-8
- UFC 3-260-02
- Based on Payement Thickness

(Construction Doweled Expansion)

(Construction Doweled Different Thickness)

(Construction Doweled Different Thickness)

(Thickened Edge Joint)

- Plain
- Expansion
- Slip

(Construction Thickened Edge Plain)

Minimum 5 ' to a maximum of full slab width.

Material

Welcome to the US Army

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

(Construction Thickened Edge Expansion)

(Construction Thickened Edge Slip)

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Joint Types

Tied Construction

Not to scale

- Grades
- Large Pavement Penetrations
- Small Pavement Penetrations
- Connecting Pavements
- Filets/Odd Shaped Slabs

(Grades)

- Construction joints can have continuous changes
- Slabs must not have a crown or sag between construction joints

Contraction Joint Profile

Joint Plans

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

(Grades)

- Provide Spot Elevations
- Joint Intersections

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

(Grades Spot Elevations)

(Large Pavement Penetrations)

- Larger than one slab
- Try to match joint spacing
- Odd shaped slabs near the penetration
- Hand placement required by structures

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

(Large Pavement Penetrations)

(Small Payement Penetrations)

- Smaller than one slab
- Interior of slab
- Exterior of slab

(Small Pavement Penetrations Interior preferred)

(Small Payement Penetrations Exterior

Thickened edge Expansion Joint

(Small Pavement Penetrations on joint not recommended)

2 to 3 feet minimum

(Connecting Pavements)

- Mismatched Joints
- Pavement movement laterally
- Pavement expansion

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Connecting Pavements

Connecting Pavements

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

Filets/Odd Shaped Slabs

Welcome to the US Army

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

Filets/Odd Shaped Slabs

Welcome to the US Army

Corps of Engineers

TRANSPORTATION SYSTEMS CENTER

Jointing Plans

Filets/Odd Shaped Slabs

Joint Sealing Discussion

B.J. Skar

bernard.j.skar@usace.army.mil 402-221-7262

Reasons for Sealing

- Prevent intrusion of incompressibles
- Prevent water/fluid intrusion
- Eliminate pockets for FOD buildup
- Extend pavement life

Types of Pavement Joints to Seal

- Control/contraction
- Expansion
- Construction
- Cracks

Types of Pavement Joints Sealant

- Hot Applied
- Cold Applied One Component
- Cold Applied One Component
- Preformed Compression Seal

Hot Applied

- Non-jet fuel resistant ASTM D 1190, 3405 or 3406 (old SS-S 1401)
- Jet Fuel resistant for PCC ASTM D 3569 or 3581 (old SS-S 1614)

Non-jet fuel resistant ASTM D 1190, 3405 or 3406 (old SS-S 1401)

- Recommendations: Use for asphalt pavement sealing, or at the juncture of asphalt and PCC. It is easy to use
- Disadvantages:Not recommended for PCC as bubbles form from heat and moistureNot jet blast or fuel resistant and short service life 3-5 years.

Jet Fuel resistant for PCC ASTM D 3569 or 3581 (old SS-S 1614)

- Recommendations: Use where aircraft are regularly parked, service repaired or maintained. Easy to use.
- Disadvantages: Hazardous waste material as it is coal tar based, not jet blast resistant, and short life 3 to 5 years.

Cold Applied One Component

- Meets ASTM D 5893
- Chemically Curing Silicone

Cold Applied One Component Silicone

- Recommendations: Easy to use for both small and large jobs. Has a long life 20 or more years.
- Disadvantages: Damaged or destroyed by water blasting, and swells when constantly immersed in jet fuel.

Cold Applied Two Component

- Meets SS-S 200 E
- Two components mixed in dispensing wand as it is being applied

Cold Applied Two Component

- Recommendations: Can be used in most all airfield joint sealant applications.
 Relatively long life and performs well in spalled joint walls for resealing
- Disadvantages: Two components require mixing and placing properly or it does not cure properly and makes a big mess.

Preformed Compression Seals

- Meets ASTM D 262
- Polychloroprene (neoprene)

Preformed Compression Seals

- Recommended for use on all new pavements, 20 + year life
- Must get the joint size correct and must have good joint walls (no spalls)

LOX Area Joint Sealant

- No sealant is truly LOX compatible.
- All exhibit explosive characteristics in LOX environment.
- Threshold values vary.

LOX Area Joint Sealant

- Use only Approved Sealants
- USAF approved sealants:
 - Poly-jet LOX, mfgr W.R. Meadows
 - •Jeene
 - •E-Bond 1018

Design Essentials Discussion

Kordon Kiel

kordon.l.kiel@usace.army.mil 402-221-7268

Design Essentials

- Plans
- Guide Specifications
- Design Analysis
- Phasing Plans

Plans

- UFC 3-260-02 Appendix C
 (Plans Outline.pdf included on CD)
- Overview
- Example Plans
 (Example Plans.pdf included on CD)

Guide Specifications

- UFGS Guide Specifications
 (http://www.ccb.org/docs/ufgshome/UFGSToc.htm)
- Editing for Review

(SpecsIntact Software)

Design Analysis

- UFC 3-260-02 Appendix B
 (DA Outline.pdf included on CD)
- Overview

Phasing Plans

- UFC 3-260-01 Attachment 15
 (Phasing Outline.pdf included on CD)
- Overview

